18. Aufbau des Raumes aus congruenten Polyedern. (David Hilbert)

Wenn man nach denjenigen Gruppen von Bewegungen in der Ebene fragt, für die ein Fundamentalbereich existirt, so fällt bekanntlich die Antwort sehr verschieden aus, je nachdem die betrachtete Ebene die Riemannsche (elliptische), Euklidische oder Lobatschefskiysche (hyperbolische) ist. Im Falle der elliptischen Ebene giebt es eine endliche Anzahl wesentlich verschiedener Arten von Fundamentalbereichen und es reicht eine endliche Anzahl von Exemplaren congruenter Bereiche zur lückenlosen Ueberdeckung der ganzen Ebene aus: die Gruppe besteht eben nur aus einer endlichen Anzahl von Bewegungen. Im Falle der hyperbolischen Ebene giebt es eine unendliche Anzahl wesentlich verschiedener Arten von Fundamentalbereichen, nämlich die bekannten Poincaréschen Polygone; zur lückenlosen Ueberdeckung der Ebene ist eine unendliche Anzahl von Exemplaren congruenter Bereiche notwendig. Der Fall der Euklidischen Ebene steht in der Mitte; denn in diesem Falle giebt es nur eine endliche Anzahl von wesentlich verschiedenen Arten von Bewegungsgruppen mit Fundamentalbereich; aber zur lückenlosen Ueberdeckung der ganzen Ebene ist eine unendliche Anzahl von Exemplaren congruenter Bereiche notwendig.

Genau die entsprechenden Thatsachen gelten auch im dreidimensionalen Raume. Die Thatsache der Endlichkeit der Bewegungsgruppen im elliptischen Raume ist eine unmittelbare Folge eines fundamentalen Satzes von C. Jordan {Journal für Mathematik, Bd. 84 (1878) und Atti della Reale Accademia di Napoli 1880}, wonach die Anzahl der wesentlich verschiedenen Arten von endlichen Gruppen linearer Substitutionen mit n Veränderlichen eine gewisse endliche, von n abhängige Grenze nicht überschreitet. Die Bewegungsgruppen mit Fundamentalbereich im hyperbolischen Raume sind von Fricke und Klein in den Vorlesungen über die Theorie der automorphen Funktionen {Leipzig 1897. Vgl, insbesondere Abschnitt I, Kap. 2-3} untersucht worden und endlich haben Fedorow {Symmetrie der regelmäßigen Systeme von Figuren 1890}, Schoenflies {Krystallsysteme und Krystallstructur, Leipzig 1891,} und neuerdings Rohn {Mathematische Annalen Bd. 53} den Beweis dafür erbracht, daß es im Euklidischen Raume nur eine endliche Zahl wesentlich verschiedener Arten von Bewegungsgruppen mit Fundamentalbereich giebt. Während nun die den elliptischen und hyperbolischen Raum betreffenden Resultate und Beweismethoden unmittelbar auch für den n-dimensionalen Raum Geltung haben, so scheint die Verallgemeinerung des den Euklidischen Raum betreffenden Satzes erhebliche Schwierigkeiten zu bieten und es ist daher die Untersuchung der Frage wünschenswert, ob es auch im n-dimensionalen Euklidischen Raume nur eine endliche Anzahl wesentlich verschiedener Arten von Bewegungsgruppen mit Fundamentalbereich giebt.

Ein Fundamentalbereich einer jeden Bewegungsgruppe zusammen mit den congruenten aus der Gruppe entspringenden Bereichen liefert offenbar eine lückenlose Ueberdeckung des Raumes. Es erhebt sich die Frage, ob ferner auch solche Polyeder existiren, die nicht als Fundamentalbereiche von Bewegungsgruppen auftreten und mittelst derer dennoch durch geeignete Aneinanderlagerung congruenter Exemplare eine lückenlose Erfüllung des ganzen Raumes möglich ist. Ich weise auf die hiermit in Zusammenhang stehende, für die Zahlentheorie wichtige und vielleicht auch der Physik und Chemie einmal Nutzen bringende Frage hin, wie man unendlich viele Körper von der gleichen vorgeschriebenen Gestalt, etwa Kugeln mit gegebenem Radius oder reguläre Tetraeter mit gegebener Kante (bez. in vorgeschriebener Stellung) im Raume am dichtesten einbetten, d.h. so lagern kann, daß das Verhältnis des erfüllten Raumes zum nichterfüllten Raume möglichst groß ausfällt.


Hilbert's Problems, English.   Hilberts Probleme, deutsch.


html Version © 2000 by Ina Kersten
kersten@mathematik.uni-bielefeld.de